吴月柱 Wu Yuezhu
DATE:2020-06-24 AUTHOR: VIEW:

Yue-zhu Wu, P.h.D

Professor

School of Mathematics and Statistics

Email: yuezhuwu@cslg.edu.cn

Diplomas:

Jul.1997:B.S., Qufu Normal University

Jul.2000: M.S., Nankai University

Jul. 2006: P.h.D., Shanghai Jiaotong University

Research Activities:

2002-2007: Lecturer, Qufu Normal University.

2008-2013: Associate professor, Changshu Institute of Technology.

2009-2011: Post doctoral, East China Normal University.

2013- : Professor, Changshu Institute of Technology

Research Fields:

Lie algebra & its representation

Selected Recent Publications:

1. Yuezhu Wu, Xiaoqing Yue, Linsheng Zhu, Differential Representations of the Lie Superalgebra C(n+1), Algebra Colloquium,19 :2(2012)745-754

2. Yuezhu Wu, Linsheng Zhu, Center of Schrödinger algebra and annihilators of Verma modules for Schrödinger algebra, Linear Algebra and its Applications 437 (2012) 184–188.

3. Junping Liang, Yuezhu Wu, Representations of a loop Lie algebra associated with quantum plane, Acta. Mathematica Scientia, 32B(2),(2012)579-585

4. Yuezhu Wu, Linsheng Zhu, Simple weight modules for Schrödinger algebra, Linear Algebra and its Applications 438 (2013) 559–563.

5. Yuezhu Wu, Finite dimensional indecomposable modules for Schrödinger algebra, Journal of Mathematical Physics 54, 073503 (2013)

        6. Yuezhu Wu, Xiaoqing Yue, Linsheng Zhu, Cohomology of the Schr¨odinger Algebra S(1), Acta. Mathematica Scientia(English Series), 30(12),(2014)2054-2062

        7. Yuezhu Wu, R.B.Zhang, Integrable representations of affine A(m, n)and C(m) superalgebras, Journal of Pure and Applied Algebra, 220 (2016) 1434–1450

       8. Yuezhu Wu, R.B. Zhang, Integrable representations of the quantum affine special linear superalgebra, ADV. THEOR. MATH. PHYS.20(3) 3, 553–593,( 2016)

       9. Yan He, Yuezhu Wu , Linsheng Zhu, Homology and cohomology of the super Schrödinger algebra S(1|1), Communications in Algebra, 2019

      10. Yan He, Yuezhu Wu , Linsheng Zhu, Homology and Cohomology of the Super Schr¨odinger Algebra S(1|1) with Coefficients in the Trivial Module∗ , Algebra Colloquium 26 : 4 (2019) 615–628